Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.817
Filtrar
1.
Eur J Med Chem ; 270: 116387, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593589

RESUMO

Activating apoptosis has long been viewed as an anti-cancer process, but recently increasing evidence has accumulated that induction of ferroptosis has emerged as a promising strategy for cancer therapeutics. Glutathione peroxidase 4 (GPX4) is one of the pivotal factors regulating ferroptosis that targeted inhibition or degradation of GPX4 could effectively trigger ferroptosis. In this study, a series of ML162-quinone conjugates were constructed by using pharmacophore hybridization and bioisosterism strategies, with the aim of obtaining more active anticancer agents via the ferroptosis and apoptosis dual cell death processes. Of these compounds, GIC-20 was identified as the most active one that exhibited promising anticancer activity both in vitro and in vivo via ferroptosis and apoptosis dual-targeting processes, without obvious toxicity compared with ML162. On one hand, GIC-20 could trigger ferroptosis in cells by inducing intracellular lipid peroxide and ROS accumulation, and destroying mitochondrial structure. In addition to GPX4 inhibition, GIC-20 can also trigger ferroptosis via proteasomal-mediated degradation of GPX4, suggesting GIC-20 may function as a molecule glue degrader. On the other hand, GIC-20 can also induce apoptosis via upregulating the level of apoptotic protein Bax and downregulating the level of anti-apoptotic protein Bcl-2 in HT1080 cells. Furthermore, GIC-20 also enhanced the sensitivity of resistant MIA-PaCa-2-AMG510R cells to AMG510, suggesting the great potential of GIC-20 in overcoming the acquired resistance of KRASG12C inhibitors. Overall, GIC-20 represents a novel dual ferroptosis/apoptosis inducer warranting further development for cancer therapeutics and overcoming drug resistance.


Assuntos
Compostos de Anilina , Ferroptose , Naftoquinonas , Neoplasias , Tiofenos , Humanos , Naftoquinonas/farmacologia , Apoptose
2.
ACS Appl Mater Interfaces ; 16(15): 18411-18421, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38584383

RESUMO

Cell necroptosis has presented great potential, acting as an effective approach against tumor apoptotic resistance, and it could be further enhanced via accompanying reactive oxygen species (ROS) overexpression. However, whether overproduced ROS assists the necroptotic pathway remains unclear. Thus, iron-palladium nanozyme (FePd NZ)- and shikonin (SKN)-encapsulated functional lipid nanoparticles (FPS-LNPs) were designed to investigate the ROS overexpression-enhanced SKN-induced necroptosis. In this system, SKN acts as an effective necroptosis inducer for cancer cells, and FePd NZ, a sensitive Fenton reaction catalyst, produces extra-intracellular ROS to reinforce the necroptotic pathway. Both in vitro and in vivo antitumor evaluation revealed that FPS-LNPs presented the best tumor growth inhibition efficacy compared with FP-LNPs or SKN-LNPs alone. Meanwhile, induced necroptosis by FPS-LNPs can further trigger the release of damage-associated molecular patterns (DAMPs) and antigens from dying tumor cells to activate the innate immune response. Taking biosafety into consideration, this study has provided a potential nanoplatform for cancer nanotherapy via inducing necroptosis to avoid apoptosis resistance and activate CD8+ T cell immune response.


Assuntos
Lipossomos , Nanopartículas , Naftoquinonas , Necroptose , Neoplasias , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Apoptose
3.
PLoS One ; 19(4): e0299002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626086

RESUMO

Tropical theileriosis is a fatal leukemic-like disease of cattle caused by the tick-transmitted protozoan parasite Theileria annulata. The economics of cattle meat and milk production is severely affected by theileriosis in endemic areas. The hydroxynaphtoquinone buparvaquone (BPQ) is the only available drug currently used to treat clinical theileriosis, whilst BPQ resistance is emerging and spreading in endemic areas. Here, we chronically exposed T. annulata-transformed macrophages in vitro to BPQ and monitored the emergence of drug-resistant parasites. Surviving parasites revealed a significant increase in BPQ IC50 compared to the wild type parasites. Drug resistant parasites from two independent cloned lines had an identical single mutation, M128I, in the gene coding for T. annulata cytochrome B (Tacytb). This in vitro generated mutation has not been reported in resistant field isolates previously, but is reminiscent of the methionine to isoleucine mutation in atovaquone-resistant Plasmodium and Babesia. The M128I mutation did not appear to exert any deleterious effect on parasite fitness (proliferation and differentiation to merozoites). To gain insight into whether drug-resistance could have resulted from altered drug binding to TaCytB we generated in silico a 3D-model of wild type TaCytB and docked BPQ to the predicted 3D-structure. Potential binding sites cluster in four areas of the protein structure including the Q01 site. The bound drug in the Q01 site is expected to pack against an alpha helix, which included M128, suggesting that the change in amino acid in this position may alter drug-binding. The in vitro generated BPQ resistant T. annulata is a useful tool to determine the contribution of the various predicted docking sites to BPQ resistance and will also allow testing novel drugs against theileriosis for their potential to overcome BPQ resistance.


Assuntos
Antiprotozoários , Naftoquinonas , Parasitos , Theileria annulata , Theileriose , Carrapatos , Animais , Bovinos , Theileriose/tratamento farmacológico , Theileriose/parasitologia , Theileria annulata/genética , Citocromos b/genética , Isoleucina/farmacologia , Metionina/farmacologia , Antiprotozoários/farmacologia , Mutação , Racemetionina/farmacologia , Antiparasitários/farmacologia , Carrapatos/parasitologia
4.
Molecules ; 29(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38543031

RESUMO

Ipê is a plant of the Bignoniaceae family. Among the compounds extracted from this tree, lapachol is notable because its structural modification allows the production of ß-lapachone, which has anticancer properties. The objective of this work was to test this hypothesis at a cellular level in vitro and assess its potential safety for use. The following tests were performed: MTT cell viability assay, apoptotic index determination, comet assay, and micronucleus test. The results showed that ß-lapachone had a high cytotoxic capacity for all cell lines tested: ACP02 (gastric adenocarcinoma cells), MCF7 (breast carcinoma cells), HCT116 (colon cancer cells) and HEPG2 (hepatocellular carcinoma cells). Regarding genotoxicity, the exposure of cells to sublethal doses of ß-lapachone induced DNA damage (assessed by the comet assay) and nuclear abnormalities, such as nucleoplasmic bridges and nuclear buds (assessed by the micronucleus test). All tested cell lines responded similarly to ß-lapachone, except for ACP02 cells, which were relatively resistant to the cytotoxic effects of the compound in the MTT test. Our results collectively indicate that although ß-lapachone showed antiproliferative activity against cancer cell lines, it also caused harmful effects in these cells, suggesting that the use of ß-lapachone in treating cancer should be carried out with caution.


Assuntos
Antineoplásicos , Neoplasias do Colo , Naftoquinonas , Humanos , Apoptose , Naftoquinonas/farmacologia , Antineoplásicos/farmacologia , Dano ao DNA
5.
Chem Biodivers ; 21(4): e202301946, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38433095

RESUMO

In Turkish folk medicine, the roots of Onosma armeniacum Klokov are used to heal wounds, burns, hemorrhoids, hoarseness, dyspnea, stomach ulcers, and abdominal aches. The objective was to evaluate the plant's ethnopharmacological applications using in vivo pharmacological experimental models. In vivo linear incision and circular excision the wound models were used to assess the wound healing activity along with histopathological investigation. The active component(s) were isolated and identified after being exposed to several chromatographic separation procedures on the primary extract. The n-hexane-dichloromethane mixture extract was subjected to chromatographic separation after the wound-healing activity was confirmed. Deoxyshikonin (1), ß,ß-dimethylacrylshikonin (2), α-methyl-n-butylshikonin (3), isovalerylshikonin (4), acetylshikonin (5), ß-hydroxyisovalerylshikonin (6), and 5,8-O-dimethylacetylshikonin (7) were identified as the structures of the isolated compounds. The efficacy of O. armeniacum to heal wounds was investigated in this study. Shikonin derivatives were identified as the primary active components of the roots by bioassay-guided fractionation and isolation procedures.


Assuntos
Boraginaceae , Naftoquinonas , Boraginaceae/química , Extratos Vegetais/química , Cicatrização , Raízes de Plantas/química , Naftoquinonas/química
6.
Med Oncol ; 41(4): 89, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520625

RESUMO

The handshake between the complex networks of matrix components in the tumor micro-environment (TME) is considered as a crucial event in the progression of several cancers including cervical carcinoma (CC). A number of studies report a connection between epidermal growth factor (EGF) and matrix component production. Studies demonstrate that the mechano-transduction trigger by collagen, influences the tumor cells to undergo epithelial-mesenchymal transition (EMT) and block the entry of drugs. We hypothesize that the intervention to prevent EGF triggered deposition of matrix components could sensitize several therapies for CC cells. We utilized morphological assessment, MTT assay, mitored tracking, acridine orange (AO)/ ethidium bromide (EtBr) staining and bromodeoxyuridine (BrdU) assay to measure the cell viability, mitochondrial activity, cellular apoptosis, and DNA synthesis. Clonogenic assay and scratch healing assay were executed to address the stemness and migratory potential. Detection of glycosaminoglycan's (GAGs), collagen, matrix metalloproteinase (MMP)-2/9 secretion and calcium (Ca2+) ions were performed to assess the production of matrix components. Finally, the interaction between EGFR and plumbagin was evaluated by employing molecular dynamics (MD) simulation. Pre-treating the cells with plumbagin inhibited the EGF-induced EMT along with reduction in cell proliferation, migration, clonogenesis and depletion of matrix components. The actions of EGF and plumbagin were more pronounced in HPV-positive CC cells than HPV-negative CC cells. This study identified that increased matrix production triggered by EGF-rich milieu is inhibited by plumbagin in human papilloma viral (HPV) 68 positive ME180, HPV 16 positive SiHa and HPV-negative C33A cell lines. Delivery of plumbagin directly to TME would effectively accelerate the clearance of CC cells, reduce metastasis and matrix abundance by employing targeted delivery to minimize the undesired effects of plumbagin.


Assuntos
Carcinoma , Naftoquinonas , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colágeno , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Microambiente Tumoral , Neoplasias do Colo do Útero/tratamento farmacológico
7.
Bioorg Chem ; 146: 107300, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522391

RESUMO

In the present study, an intermediate namely 2-(3-bromopropylamino)-3-chloronaphthalene-1,4-dione was initially synthesized via the nucleophilic addition-elimination reaction between 2,3-dichloro-1,4-naphthoquinone and 3-bromo-1-aminopropane. Then a coupling reaction between the intermediate and piperazine derivatives yielded a number of 1,4-naphthoquinone derivatives. Spectroscopic analysis successfully characterized the products that were obtained in good yields. In vitro antibacterial properties of the compounds were examined against different bacterial strains. In vitro antibacterial properties of the compounds were examined against the bacterial strains S. Aureus, E. Faecalis, E. Coli and P. Aeruginosa. While compound 9 was found to be effective against all bacterial strains used, compound 12 was active against three strains and compounds 10 and 11 were effective against the two. None of the compounds are effective against C. albicans strain. In silico molecular docking studies revealed that all compounds had docking scores comparable to the antibacterial drugs ciprofloxacin and gentamicin and might be considered as DNA gyrase B inhibitors. Molecular dynamics simulations were also conducted for a better understanding of the stability and the selected docked complexes. Additionally, the drug similarity of the synthesized compounds and ADMET characteristics were examined in conjunction with the antibiotic ciprofloxacin, and drug potentials were then evaluated. Compatible predictions were found with the drug similarity and ADMET parameters.


Assuntos
Escherichia coli , Naftoquinonas , Staphylococcus aureus , Simulação de Acoplamento Molecular , Antibacterianos/química , Ciprofloxacina/farmacologia , Bactérias , Inibidores da Topoisomerase II/farmacologia , Testes de Sensibilidade Microbiana
8.
World J Microbiol Biotechnol ; 40(4): 129, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459287

RESUMO

Fungal infections represent a challenging threat to the human health. Microsporum gypseum and Trichophyton rubrum are pathogenic fungi causing various topical mycoses in humans. The globally emerging issue of resistance to fungi demands the development of novel therapeutic strategies. In this context, the application of nanoliposomes as vehicles for carrying active therapeutic agents can be a suitable alternative. In this study, rhinacanthin-C was isolated from Rhinacanthus naustus and encapsulated in nano-liposomal formulations, which were prepared by the modified ethanol injection method. The two best formulations composed of soybean phosphatidylcholine (SPC), cholesterol (CHL), and tween 80 (T80) in a molar ratio of 1:1:0 (F1) and 1:1:0.5 (F2) were proceeded for experimentation. The physical characteristics and antifungal activities were performed and compared with solutions of rhinacanthin-C. The rhinacanthin-C encapsulating efficiencies in F1 and F2 were 94.69 ± 1.20% and 84.94 ± 1.32%, respectively. The particle sizes were found to be about 221.4 ± 13.76 nm (F1) and 115.8 ± 23.33 nm (F2), and zeta potential values of -38.16 mV (F1) and -40.98 mV (F2). Similarly, the stability studies of rhinacanthin-C in liposomes demonstrated that rhinacanthin-C in both formulations was more stable in mediums with pH of 4.0 and 6.6 than pure rhinacanthin-C when stored at the same conditions. Rhinacanthin-C in F1 was slightly more stable than F2 when stored in mediums with a pH of 10.0 after three months of storage. However, rhinacanthin-C in both formulations was less stable than pure rhinacanthin-C in a basic medium of pH 10.0. The antifungal potential was evaluated against M. gypsum and T. rubrum. The findings revealed a comparatively higher zone of inhibition for F1. In the MIC study, SPC: CHL: T80 showed higher inhibition against M. gypseum and a slightly higher inhibition against T. rubrum compared to free rhinacanthin-C solution. Moreover, rhinacanthin-C showed significant interaction against 14α-demethylase in in silico study. Overall, this study demonstrates that nanoliposomes containing rhinacanthin-C can improve the stability and antifungal potential of rhinacanthin-C with sustained and prolonged duration of action and could be a promising vehicle for delivery of active ingredients for targeting various fungal infections.


Assuntos
Acanthaceae , Micoses , Naftoquinonas , Humanos , Antifúngicos/farmacologia , Extratos Vegetais/farmacologia , Naftoquinonas/química , Acanthaceae/química
9.
Bioorg Med Chem ; 102: 117671, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452407

RESUMO

The search for novel anticancer drugs is essential to expand treatment options, overcome drug resistance, reduce toxicity, promote innovation, and tackle the economic impact. The importance of these studies lies in their contribution to advancing cancer research and enhancing patient outcomes in the battle against cancer. Here, we developed new asymmetric hybrids containing two different naphthoquinones linked by a 1,2,3-1H-triazole nucleus, which are potential new drugs for cancer treatment. The antitumor activity of the novel compounds was tested using the breast cancer cell lines MCF-7 and MDA-MB-231, using the non-cancer cell line MCF10A as control. Our results showed that two out of twenty-two substances tested presented potential antitumor activity against the breast cancer cell lines. These potential drugs, named here 12g and 12h were effective in reducing cell viability and promoting cell death of the tumor cell lines, exhibiting minimal effects on the control cell line. The mechanism of action of the novel drugs was assessed revealing that both drugs increased reactive oxygen species production with consequent activation of the AMPK pathway. Therefore, we concluded that 12g and 12h are novel AMPK activators presenting selective antitumor effects.


Assuntos
Antineoplásicos , Neoplasias da Mama , Naftoquinonas , Humanos , Feminino , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Triazóis/farmacologia , Naftoquinonas/farmacologia , Proteínas Quinases Ativadas por AMP , Proliferação de Células , Apoptose , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais
10.
Eur J Med Chem ; 268: 116249, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458106

RESUMO

Cancer encompasses a group of pathologies with common characteristics, high incidence, and prevalence in all countries. Although there are treatments available for this disease, they are not always effective or safe, often failing to achieve the desired results. This is why it is necessary to continue the search for new therapies. One of the strategies for obtaining new antitumor drugs is the use of 1,4-naphthoquinone as a scaffold in synthetic or natural products with antitumor activity. This review focuses on compiling studies related to the antitumor activity of 1,4-naphthoquinone and its natural and synthetic derivatives over the last 10 years. The work describes the main natural naphthoquinones with antitumor activity and classifies the synthetic naphthoquinones based on the structural modifications made to the scaffold. Additionally, the formation of metal complexes using naphthoquinones as a ligand is considered. After a thorough review, 197 synthetic compounds with potent biological activity against cancer have been classified according to their chemical structures and their mechanisms of action have been described.


Assuntos
Antineoplásicos , Produtos Biológicos , Naftoquinonas , Linhagem Celular Tumoral , Naftoquinonas/química , Antineoplásicos/farmacologia , Antineoplásicos/química
11.
Bioorg Med Chem Lett ; 104: 129714, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38522589

RESUMO

A series of new fluorinated dihydrofurano-napthoquinone compounds were sucessfully synthesized in good yields using microwave-assisted multi-component reactions of 2-hydroxy-1,4-naphthoquinone, fluorinated aromatic aldehydes, and pyridinium bromide. The products were fully characterized using spectroscopic techniques and evaluated for their anti-inflammatory activity using lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Among 12 new compounds, compounds 8b, 8d, and 8e showed high potent NO inhibitory activity in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells with IC50 values ranging from 1.54 to 3.92 µM. The levels of pro-inflammatory cytokines IL-1ß and IL-6 in LPS-stimulated RAW264.7 macrophages were remarkably decreased after the application of 8b, 8d, 8e and 8k. Molecular docking simulations revealed structure-activity relationships of 8b, 8d, and 8e toward NO synthase, cyclooxygenase (COX-2 over COX-1), and prostaglandin E synthase-1 (mPGES-1). Further physicochemical and pharmacokinetic computations also demonstrated the drug-like characteristics of synthesized compounds. These findings demonstrated the importance of fluorinated dihydrofurano-napthoquinone moieties in the development of potential anti-inflammatory agents.


Assuntos
Lipopolissacarídeos , Naftoquinonas , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Naftoquinonas/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Citocinas/metabolismo , Células RAW 264.7 , Ciclo-Oxigenase 2/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II
12.
Eur J Med Chem ; 269: 116338, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38522112

RESUMO

Monogenea, a prevalent parasite in aquaculture, poses significant threats to the industry, leading to substantial losses. Current preventive measures have proven insufficient, necessitating the development of novel and effective anti-parasitic drugs. In this investigation, we obtained the full-length myosin cDNA sequence by analyzing three-generation transcriptome data, revealing a 5817-base sequence encoding 1938 amino acids. Subsequently, we modeled and analyzed the characteristics of the secondary and tertiary of myosin, pinpointing the crucial functional region within the motor domain (amino acids 1-768). The prokaryotic expression of this domain yielded a protein of 87.44 kDa, confirmed as myosin by Western Blotting. Molecular docking identified ASN439 as the key amino acid residue involved in arctigenin and myosin binding, a result corroborated by site-directed mutagenesis, affirming the active cavity of this interaction. Chalcone and shikonin were chosen from a virtual sieve of molecular library of natural drugs based on the active cavity. Chalcone and shikonin exhibited EC50 values of 1.085 mg/L and 0.371 mg/L, respectively, with corresponding IC50 values for myosin of 0.44 mM and 0.14 mM. Given its superior activity and structure, shikonin was selected for further optimization of drug molecule design, culminating in the discovery of 1,4-naphthoquinone as a potent antiparasitic agent. This compound demonstrated an EC50 of 0.047 mg/L, LC50 of 0.23 mg/L, and a TI index of 4.893. These findings collectively highlight the potential of shikonin and 1,4-naphthoquinone as alternative compounds to control Gyrodactylus infections. Further optimization of medicinal chemistry holds promise for the development of more potent 1,4-naphthoquinone analogues, offering prospects for future anthelmintic control through combinatorial or replacement strategies.


Assuntos
Anti-Helmínticos , Chalconas , Naftoquinonas , Simulação de Acoplamento Molecular , Desenho de Fármacos , Aminoácidos
13.
Int J Biol Macromol ; 263(Pt 2): 130279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401585

RESUMO

Despite ortho-quinones showing several biological and pharmacological activities, there is still a lack of biophysical characterization of their interaction with albumin - the main carrier of different endogenous and exogenous compounds in the bloodstream. Thus, the interactive profile between bovine serum albumin (BSA) with ß-lapachone (1) and its corresponding synthetic 3-sulfonic acid (2, under physiological pH in the sulphonate form) was performed. There is one main binding site of albumin for both ß-lapachones (n ≈ 1) and a static fluorescence quenching mechanism was proposed. The Stern-Volmer constant (KSV) values are 104 M-1, indicating a moderate binding affinity. The enthalpy (-3.41 ± 0.45 and - 8.47 ± 0.37 kJ mol-1, for BSA:1 and BSA:2, respectively) and the corresponding entropy (0.0707 ± 0.0015 and 0.0542 ± 0.0012 kJ mol-1 K-1) values indicate an enthalpically and entropically binding driven. Hydrophobic interactions and hydrogen bonding are the main binding forces. The differences in the polarity of 1 and 2 did not change significantly the affinity to albumin. In addition, the 1,2-naphthoquinones showed a similar binding trend compared with 1,4-naphthoquinones.


Assuntos
Naftoquinonas , Ligação Proteica , Espectrometria de Fluorescência , Sítios de Ligação , Termodinâmica , Soroalbumina Bovina/química , Dicroísmo Circular
14.
J Med Chem ; 67(5): 3626-3642, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38381886

RESUMO

In this study, a series of 2- and/or 3-substituted juglone derivatives were designed and synthesized. Among them, 9, 18, 22, 30, and 31 showed stronger inhibition activity against cell surface PDI or recombinant PDI and higher inhibitory effects on U46619- and/or collagen-induced platelet aggregation than juglone. The glycosylated derivatives 18 and 22 showed improved selectivity for inhibiting the proliferation of multiple myeloma RPMI 8226 cells, and the IC50 values reached 61 and 48 nM, respectively, in a 72 h cell viability test. In addition, 18 and 22 were able to prevent tumor cell-induced platelet aggregation and platelet-enhanced tumor cell proliferation. The molecular docking showed the amino acid residues Gln243, Phe440, and Leu443 are important for the compound-protein interaction. Our results reveal the potential of juglone derivatives to serve as novel antiplatelet and anticancer dual agents, which are available to interrupt platelet-cancer interplay through covalent binding to PDI catalytic active site.


Assuntos
Antineoplásicos , Naftoquinonas , Neoplasias , Humanos , Isomerases de Dissulfetos de Proteínas , Simulação de Acoplamento Molecular , Plaquetas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Neoplasias/metabolismo
15.
Toxicon ; 239: 107634, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38307130

RESUMO

Plumbago scandens L. (Plumbaginaceae) occurs in all regions of Brazil. It has been described as toxic to cattle and goats. Caustic lesions in the upper digestive tract characterize poisoning. P. scandens contains a naphthoquinone named plumbagin, which presents high cytotoxic activity. Plumbago auriculata Lam., a widely used ornamental plant, is considered potentially toxic, but there is limited data about its toxicity. This work aimed to validate analytical methodologies for determining the levels of plumbagin in samples of leaves, stems, and rumen content to be used as an auxiliary chemical marker in the laboratory diagnosis of intoxication. One methodology used thin layer chromatography (TLC), and another used high-performance liquid chromatography (HPLC). The presence of palisade grass (Urochloa brizantha (Hochst. ex A.Rich.) R.D.Webster), Guinea grass (Megathyrsus maximus (Jacq.) B.K.Simon & S.W.L.Jacobs), corn silage, and rumen content did not interfere with plumbagin in the two methodologies. The TLC methodology generates qualitative results but is simple to implement and has a low cost. The HPLC methodology showed a limit of detection (LOD) of 0.01 µg/mL and a limit of quantification (LOQ) of 0.05 µg/mL. Leaf and stem samples of P. scandens evaluated showed high levels of plumbagin (0.261 ± 0.087 % and 0.327 ± 0.055 %, respectively). In contrast, leaves of P. auriculata did not show detectable levels of the toxin, and some stem samples showed low levels (up to 0.000114 %). Thus, these methodologies can be used to confirm or rule out the consumption of P. scandens in rumen content from animals suspected of poisoning.


Assuntos
Naftoquinonas , Plumbaginaceae , Animais , Bovinos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia em Camada Delgada , Plumbaginaceae/química , Raízes de Plantas/química
16.
Phytomedicine ; 126: 154894, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377719

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a malignant tumor without specific therapeutic targets and a poor prognosis. Chemotherapy is currently the first-line therapeutic option for TNBC. However, due to the heterogeneity of TNBC, not all of TNBC patients are responsive to chemotherapeutic agents. Therefore, the demand for new targeted agents is critical. ß-tubulin isotype III (Tubb3) is a prognostic factor associated with cancer progression, including breast cancer, and targeting Tubb3 may lead to improve TNBC disease control. Shikonin, the active compound in the roots of Lithospermun erythrorhizon suppresses the growth of various types of tumors, and its efficacy can be improved by altering its chemical structure. PURPOSE: In this work, the anti-TNBC effect of a shikonin derivative (PMMB276) was investigated, and its mechanism was also investigated. STUDY DESIGN/METHODS: This study combines flow cytometry, immunofluorescence staining, immunoblotting, immunoprecipitation, siRNA silencing, and the iTRAQ proteomics assay to analyze the inhibition potential of PMMB276 on TNBC. In vivo study was performed, Balb/c female murine models with or without the small molecule treatments. RESULTS: Herein, we screened 300 in-house synthesized analogs of shikonin against TNBC and identified a novel small molecule, PMMB276; it suppressed cell proliferation, induced apoptosis, and arrested the cell cycle at the G2/M phase, suggesting that it could have a tumor suppressive role in TNBC. Tubb3 was identified as the target of PMMB276 using proteomic and biological activity analyses. Meanwhile, PMMB276 regulated microtubule dynamics in vitro by inducing microtubule depolymerization and it could act as a tubulin stabilizer by a different process than that of paclitaxel. Moreover, suppressing or inhibiting Tubb3 with PMMB276 reduced the growth of breast cancer in an experimental mouse model, indicating that Tubb3 plays a significant role in TNBC progression. CONCLUSION: The findings support the therapeutic potential of PMMB276, a Tubb3 inhibitor, as a treatment for TNBC. Our findings might serve as a foundation for the utilization of shikonin and its derivatives in the development of anti-TNBC.


Assuntos
Naftoquinonas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/patologia , Tubulina (Proteína) , Proteômica , Proliferação de Células
17.
Sci Rep ; 14(1): 3178, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326371

RESUMO

MUC1 is a transmembrane glycoprotein that is overexpressed and aberrantly glycosylated in epithelial cancers. The cytoplasmic tail of MUC1 (MUC1 CT) aids in tumorigenesis by upregulating the expression of multiple oncogenes. Signal transducer and activator of transcription 3 (STAT3) plays a crucial role in several cellular processes and is aberrantly activated in many cancers. In this study, we focus on recent evidence suggesting that STAT3 and MUC1 regulate each other's expression in cancer cells in an auto-inductive loop and found that their interaction plays a prominent role in mediating epithelial-to-mesenchymal transition (EMT) and drug resistance. The STAT3 inhibitor Napabucasin was in clinical trials but was discontinued due to futility. We found that higher expression of MUC1 increased the sensitivity of cancer cells to Napabucasin. Therefore, high-MUC1 tumors may have a better outcome to Napabucasin therapy. We report how MUC1 regulates STAT3 activity and provide a new perspective on repurposing the STAT3-inhibitor Napabucasin to improve clinical outcome of epithelial cancer treatment.


Assuntos
Benzofuranos , Naftoquinonas , Neoplasias , Humanos , Fator de Transcrição STAT3/metabolismo , Neoplasias/metabolismo , Benzofuranos/farmacologia , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Linhagem Celular Tumoral , Mucina-1/genética , Mucina-1/metabolismo
18.
Pharm Dev Technol ; 29(3): 153-163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330994

RESUMO

Shikonin (SHK) has been evidenced to possess effects against various cancer cells. However, poor aqueous solubility and high toxicity restrict its application. In the study, RGD-decorated liposomes loaded with SHK (RGD-Lipo-SHK) were prepared via thin-film hydration method. Characterization and cellular uptake of liposomes was evaluated. Cytotoxicity of blank liposomes and different SHK formulations was measured against breast cancer cells (MDA-MB-231, MCF-7, and MCF-10A). Anti-tumour effects and pharmacokinetic parameters of different SHK formulations were appraised in tumour spheroids and in rat model, respectively. Liposomes displayed a particle size of less than 127 nm with a polydispersity index about 0.21. The encapsulation efficiency was about 91% for SHK, and drug leakage rate of liposomes was less than 6%. RGD-Lipo-SHK showed superior cellular internalization in the αvß3-positive MDA-MB-231 cells. Blank liposomes had no cytotoxicity to MDA-MB-231 and MCF-7 cells. Howbeit, different SHK formulations obviously inhibited proliferation of MCF-10A cells, especially free SHK. Meanwhile, RGD-Lipo-SHK significantly inhibited growth inhibition of tumour spheroids. The pharmacokinetics study indicated that the peak concentration, area under plasma concentration-time curves, half-life, and mean residence time of RGD-Lipo-SHK distinctly increased compared with those of free SHK. Altogether, these results demonstrated RGD-Lipo-SHK could reduce cytotoxicity, strengthen the antitumor-targeted effect, and prolong circulation time, which provides a foundation for further in vivo experimentations.


Assuntos
Lipossomos , Naftoquinonas , Humanos , Ratos , Animais , Naftoquinonas/farmacologia , Células MCF-7 , Oligopeptídeos , Linhagem Celular Tumoral
19.
Int J Biol Macromol ; 262(Pt 1): 129937, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325683

RESUMO

Diabetic wounds are typically chronic wounds and the healing process is limited by problems such as high blood glucose levels, bacterial infections, and other issues that make wound healing difficult. Designing drug-loaded wound dressings is an effective way to promote diabetic wound healing. In this study, we developed an SA/PVA nanofiber (SPS) containing Shikonin (SK) for the treatment of diabetic wounds. The prepared nanofibers were uniform in diameter, had good hydrophilicity and high water vapor permeability, and effectively promoted gas exchange between the wound site and the outside world. The results of in vitro experiments showed that SPS was effective in antimicrobial, antioxidant, and biocompatible. In vivo tests showed that the wound healing rate of mice treated with SPS reached 85.5 %. Immunohistochemical staining results showed that SPS was involved in the diabetic wound healing process through the up-regulation of growth factors (CD31, HIF-1α) and the down-regulation of inflammatory factors (CD68). Western blotting experiments showed that SPS attenuated the inflammation through the inhibition of the IκBα/NF-κB signaling pathway. These results suggest that SPS is a promising candidate for future clinical application of chronic wound dressings.


Assuntos
Diabetes Mellitus , Nanofibras , Naftoquinonas , Animais , Camundongos , Álcool de Polivinil/farmacologia , Alginatos/farmacologia , Cicatrização , Antibacterianos/farmacologia
20.
Int. j. morphol ; 42(1): 127-136, feb. 2024. ilus
Artigo em Inglês | LILACS | ID: biblio-1528822

RESUMO

SUMMARY: The objective of this study was to investigate the therapeutic wound healing potential and molecular mechanisms of shikonin as small molecules in vitro. A mouse burn model was used to explore the potential therapeutic effect of shikonin; we traced proliferating cells in vivo to locate the active area of skin cell proliferation. Through the results of conventional pathological staining, we found that shikonin has a good effect on the treatment of burned skin and promoted the normal distribution of skin keratin at the damaged site. At the same time, shikonin also promoted the proliferation of skin cells at the damaged site; importantly, we found a significant increase in the number of fibroblasts at the damaged site treated with shikonin. Most importantly, shikonin promotes fibroblasts to repair skin wounds by regulating the PI3K/AKT signaling pathway. This study shows that shikonin can effectively promote the proliferation of skin cell, and local injection of fibroblasts in burned skin can play a certain therapeutic role.


El objetivo de este trabajo fue investigar el potencial terapéutico de cicatrización de heridas y los mecanismos moleculares de la shikonina como moléculas pequeñas in vitro. Se utilizó un modelo de quemaduras en ratones para explorar el posible efecto terapéutico de la shikonina; Rastreamos las células en proliferación in vivo para localizar el área activa de proliferación de células de la piel. A través de los resultados de la tinción para patología convencional, encontramos que la shikonina tiene un buen efecto en el tratamiento de la piel quemada y promueve la distribución normal de la queratina de la piel en el sitio dañado. Al mismo tiempo, la shikonina también promovió la proliferación de células de la piel en el sitio dañado. Es importante destacar que encontramos un aumento significativo en la cantidad de fibroblastos en el sitio dañado tratado con shikonina. Lo más importante es que la shikonina promueve la función reparadora de fibroblastos en las heridas de la piel regulando la vía de señalización PI3K/ AKT. Este estudio muestra que la shikonina puede promover eficazmente la proliferación de células de la piel y que la inyección local de fibroblastos en la piel quemada puede desempeñar un cierto papel terapéutico.


Assuntos
Animais , Camundongos , Cicatrização/efeitos dos fármacos , Queimaduras/tratamento farmacológico , Naftoquinonas/administração & dosagem , Pele , Técnicas In Vitro , Naftoquinonas/farmacologia , Fosfatidilinositol 3-Quinases , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-akt , Fibroblastos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...